We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
International Journal of Esthetic Dentistry  (English Edition)



Forgotten password?


Int J Esthet Dent 13 (2018), No. 3     6. Aug. 2018
Int J Esthet Dent 13 (2018), No. 3  (06.08.2018)

Page 318-332, PubMed:30073216

Luting of inlays, onlays, and overlays with preheated restorative composite resin does not prevent seating accuracy
Magne, Pascal / Razaghy, Mehrdad / Carvalho, Marco Aurelio / Soares, Luciana Mara
Purpose: To evaluate in vitro the vertical seating of computer-assisted design/computer-assisted manufacturing (CAD/CAM) composite resin inlays, onlays, and overlays luted with two different composite resins.
Materials and methods: Sixty plastic typodont molars were prepared for medium-sized MOD inlays, anatomic onlays, and flat overlays (n = 20); 3-mm thick at the central groove with similar morphology (Cerec biogeneric copy). Restorations were milled using Lava Ultimate blocks, and included standardized hemispherical occlusal concavity for seating measurements with an electromechanic system (force = 30 N). Restorations were luted either with preheated composite resin (Filtek Z100) or dual-cure resin cement (RelyX Ultimate). Seating of restorations was first evaluated at try-in (baseline). Seating was reevaluated after airborne-particle abrasion (Step 1), after seating with luting agent (Step 2), and after light polymerization (Step 3). The Friedman test followed by the Wilcoxon post hoc test were used to compare the seating among steps, and the Kruskal-Wallis test followed by the Mann-Whitney post hoc test were used to compare the seating between luting agents at P < 0.05.
Results: Seating differences varied significantly from baseline (P < 0.0125). All restorations seated 3.85 µm (inlays) to 5.45 µm (onlays) deeper after airborne-particle abrasion (Step 1) (P < 0.007). Except for cement-luted inlays, the try-in position (±1 µm) was recovered following unpolymerized luting (Step 2). After polymerization (Step 3), onlays and overlays seated 2.9 to 3.9 µm deeper than during try-in (baseline) using Z100 (P < 0.005), and 7.0 to 7.3 µm deeper using RelyX (P = 0.005). Inlays luted with RelyX seated higher than during try-in (baseline), exactly 7.9 µm after Step 2 (P = 0.005), and 7.7 µm after Step 3 (P = 0.008). Luting with Z100 sustained the seating of inlays with no statistical difference when compared to baseline (P = 0.157).
Conclusion: Airborne-particle abrasion significantly deepens the seating of CAD/CAM composite resin restorations, but the presence of unpolymerized restorative composite resin luting agent perfectly compensates for this discrepancy. Following polymerization, onlays and overlays seat deeper compared to inlays, especially when using RelyX. The latter, however, resulted in a slightly higher seating of inlays.
Clinical significance: With the least variation compared to baseline seating (try-in), restorative composite resin used as luting agent resulted in the seating of CAD/CAM inlays, onlays, and overlays closer to baseline when compared to dual-cure resin cement.